Archivi autore

articolidiastronomia

DevOps Engineer and Software Analyst

I Greci e i Troiani

Procediamo con l’analisi degli asteroidi Greci e Troiani: il punto di partenza è lo stesso dataset usato per l’analisi espresso nell’articolo “I compagni di Giove”: la differenza è che adesso filtriamo il dataset per questa diversa famiglia ed eliminando ancora una volta gli outliers.

I primi record del dataset dei Troiani. (Si noti il primo, l’asteroide di nome Achilles 🙄)

Selezioniamo un sottoinsieme della famiglia di asteroidi (120 oggetti) compreso l’asteroide Achilles, e disegniamo la la distribuzione statica delle loro orbite su un piano visto dall’alto del Sistema Solare alla situazione attuale (Agosto 2023). Ecco la proiezione dei Troiani al giorno 2023-08-18 16:48:26 sul piano del Sistema Solare.

Gli asteroidi di questa famiglia di asteroidi sono co-orbitali all’orbita di Giove e si dividono in due sottogruppi:

  • quelli che precedono Giove (chiamati Troiani)
  • quelli che seguono Giove (chiamati Greci)

La loro inclinazione sul piano orbitale è compresa in un intervallo ± 1 U.A.

Analizziamo ora la dinamica dell’orbita effettuando uno snapshot dell’orbita ad intervalli prefissati. Come per l’analisi precedente viene scritto un software python che fa uso della libreria python rebound: per analizzare un sistema an N-corpi. Si recuperano i parametri di ciascun oggetto dal database New Horizon della NASA: massa (ove possibile), posizione p (x, y, z) e vettore velocità v (vx, vy, vz), quindi si integra la soluzione per un periodo di tempo prefissato.

Il tempo di integrazione scelto è di un anno gioviano: in tal modo possiamo analizzare come cambia l’orbita degli Troiani per ogni rivoluzione di Giove. L’analisi finale contiene sempre 311760 campioni (si veda qui per maggiori dettagli).

Ecco la posizione dei Troiani per un intero anno gioviano (11 frame). I colori rappresentano i seguenti oggetti:

  • arancione: il Sole
  • rosso: Giove
  • blu: l’asteroide Achilles
Gif creata dall’autore che mostra il percorso dei Greci e Troiani.
L’orbita è corotazionale a Giove

Seguendo l’orbita di Achilles per un intero anno gioviano troviamo che:

  • L’asteroide è in rotazione sincrona con Giove.
  • L’asteroide precede sempre Giove. Si trova nel punto lagrangiano L4 e forma un angolo di 60° con il Sole e il Gigante Gassoso.

I due oggetti sono in risonanza di moto medio 1:1. Lo stesso comportamento vale anche per gli altri asteroidi Troiani in compagnia di Achilles. Il sottogruppo dei Greci sono anch’essi in rotazione sincrona di moto medio 1:1 con Giove. Si trovano intorno al punto lagrangiano L5 e seguono sempre Giove.

Il fenomeno si visualizza meglio nel grafico seguente ove viene riportato il modulo della distanza di Achilles (assieme ad altri asteroidi) in un anno gioviano (433 campioni).

Andamento del modulo del vettore distanza di alcuni Troaini. In evidenza la risonanza 1:1 con Giove (in blu)

Ad ogni periodo di Giove corrisponde una rivoluzione di Achilles. il fenomeno è condiviso da tutti gli asteroidi della stessa famiglia (nel grafico ne vengono riportate solo quattro): l’unica differenza riguarda la fase. Notare la differenza con lo stesso grafico riportato nell’analisi della famiglia Hilda: mentre in questo caso le distanza medie sono le circa stesse per tutti I corpi celesti, ovvero 5,2 A.U. (non c’è una componente continua addizionale), gli Hilda invece orbitano più vicini al Sole (distanza media 4.2 A.U.)

Orbita 3D di alcuni Troiani rispetto al Sole. Diagramma dell’autore

In python possiamo disegnare l’orbita di alcuni troiani nello spazio 3D, ove sui tre assi cartesiani indicano la distanza (A.U.), al centro in giallo c’è il Sole, in rosso scuro l’orbita di Giove e con colori differenti le orbite degli asteroidi.

Rispetto alla semplice proiezione 2D dei diagrammi precedenti, il disegno in 3D consente di analizzare meglio la raffigurazione dell’orbita nello spazio.

Alcuni asteroidi possiedono un’orbita molto inclinata, ad esempio:

  • l’orbita di Stentor del sottogruppo dei Greci possiede un’orbita inclinata di 39°sull’eclittica
  • l’orbita di Menestheus del sottogruppo dei Greci possiede un’orbita inclinata di 17° sull’eclittica
  • l’orbita di Iphidamas del sottogruppo dei Troiani possiede un’orbita inclinata di 25° sull’eclittica

Si ipotizza che l’alta inclinazione orbitale sia dovuto al moto di Saturno che ne perturba le orbite.

Orbite di altri Troiani con inclinazione orbitale elevata. Diagramma dell’autore

Proseguiamo con l’analisi sfruttando i dati pubblicamente disponibili dal repository del sito Planetary Data System forniti dalla missione NEOWISE. Scarichiamo il dataset, eliminiamo le colonne superflue per l’analisi e filtriamo sugli oggetti Troiani.

Ecco il contenuto parziale:

Alcuni record del dataset MPC relativi ai Troiani registrati dalla missione NEOWISE

Una breve ispezione dei dati ci dice che il dataset contiene 1860 oggetti di magnitudine assoluta media 12,25 un diametro medio di 20,83 Km ed albedo media (in visuale) 0,07.

Prima ispezione dei dati: analisi della media, scarto e percentili del campione

Procediamo con l’analisi con due diagrammi scatter che mettono in relazione:

  • magnitudine assoluta e diametro degli oggetti
  • albedo (in banda visuale) diametro degli oggetti

All’aumentare della magnitudine (minore luminosità) aumenta il numero di oggetti Troiani con diametro minore. A destra invece vediamo che l’albedo (circa 0,075) si concentra sugli oggetti con diametro 20 Km (in questo diagramma l’asse delle scisse è in scala logaritmica).

Per dare un’idea delle dimensioni di questa famiglia di asteroidi, utilizzando il modulo folium si può proiettare il diametro di alcuni di essi su una mappa geografica centrata sula sede del GAV.

Si edivenzia che:

  • il più piccolo (K09X21Y) d = 3,943 Km
  • 25-percentile (C2862) d = 12,516 Km
  • 50-percentile (Z3218) d = 15,558 Km
  • 75-percentile (B9528) d = 22,097 Km
  • il più grande (00624) d = 147,369 Km

I nomi si riferiscono alla nomenclatura dell’MPC.

Diametro di alcuni Troiani (i quattro percentili principali) riportati su mappa geografica centrata sulla sede del GAV

Concludiamo l’analisi dei Troiani con due istogrammi riguardo alla distribuzione del diametro (istogramma rosso a sinistra) e dell’albedo (istogramma blu a destra).

Istogramma dei Troiani raggruppati per diametro e albedo visuale

Alcune considerazioni

  • La maggior parte degli asteroidi Troaini ha un diametro di 20,83 km. Sono mediamenti piu’ grandi degli Hilda.
  • Si nota anche una maggiore variabilità nella distribuzione del diametro rispetto agli Hilda: l’istogramma è più “largo”.

L’albedo si concentra sul valore compreso fra 0,05 e 0,075 (i Troiani riflettono di più la luce solare degli Hilda) e sono in maggiore numerosità rispetto agli Hilda.

Tutti i grafici sono coerenti con quanto già riportato in letteratura: un indice di bontà dell’analisi amatoriale.

Biografia

La famiglia Hilda

Presentiamo l’analisi degli asteroidi della famiglia Hilda: il punto di partenza è lo stesso dataset usato per l’analisi descritto nell’articolo “I compagni di Giove”: la differenza è che adesso filtriamo per questa diversa famiglia ed eliminando ancora una volta gli outliers.

Selezioniamo un sottoinsieme della famiglia Hilda (120 oggetti) compreso l’asteroide Hilda, e disegniamo la la distribuzione statica delle loro orbite su un piano visto dall’alto del Sistema Solare alla situazione attuale. Ecco la proiezione al giorno 2023-08-07 15:01:25.

Si nota come gli asteroidi orbitano all’interno di un triangolo equilatero i cui vertici lambiscono l’orbita del gigante gassoso; la loro inclinazione sul piano orbitale è compresa in un intervallo ± 1 U.A.

Analizziamo ora la dinamica dell’orbita effettuando uno snapshot dell’orbita ad intervalli prefissati. Per fare ciò ho scritto un software python che fa uso della libreria python rebound: essa fornisce le API per integrare un sistema con N-corpi.

Anzitutto bisogna recuperare i parametri di ciascun oggetto dal database New Horizon della NASA: massa (ove possibile), posizione p (x, y, z) e vettore velocità v (vx, vy, vz), quindi si integra la soluzione per un periodo di tempo prefissato.

Il tempo di integrazione scelto è di un anno gioviano: in tal modo possiamo analizzare come cambia l’orbita degli Hilda per ogni rivoluzione di Giove. Bisogna fissare anche un quanto di tempo per l’integrazione (passo) entro il quale vengono mantenuti costante i vettori posizione e velocità.

Un anno gioviano sono 11,85 anni terrestri, ovvero 4330 giorni terrestri: si è scelto di prendere 433 campioni per ogni asteroide del subset (ricordiamo sono 120), quindi in tutto bisogna ricavare:

433 campioni/oggetto x 120 oggetti = 51960 campioni

Ogni campione è composto da due vettori (p, v) quindi in totale abbiamo:

51960 campioni * 2 * 3 = 311760 campioni

Ecco la posizione degli Hilda per un intero anno gioviano (11 frame). I colori rappresentano i seguenti oggetti:

  • arancione: Sole
  • rosso: Giove
  • blu: l’asteroide Hilda
Gif creata dall’autore che mostra il percorso a triangolo degli Hilda.
L’orbita lambisce quella di Giove

Seguendo l’orbita di Hilda per un intero anno gioviano troviamo che nel tempo in cui Giove effettua una rotazione intorno al Sole, Hilda ne compie una e mezza. Ovvero ogni due rotazioni complete di Giove, Hilda ne compie tre. Quando le orbite di due corpi celesti sono in un rapporto esprimibile in un numero razionale si dice che i due oggetti sono in risonanza.

Il fenomeno si visualizza meglio nel grafico seguente ove viene riportato il modulo della distanza dal Sole di Hilda (assieme ad altri asteroidi) in un anno gioviano (433 campioni):

Andamento del modulo del vettore distanza di alcuni Hilda. In evidenza la risonanza 2:3 con Giove (il primo in alto)
Orbita 3D di alcuni oggetti Hilda rispetto al Sole. Diagramma dell’autore

Ad ogni periodo di Giove (in blu) corrisponde una rivoluzione e mezza di Hilda. il fenomeno è condiviso da tutti gli asteroidi della stessa famiglia (nel grafico ne vengono riportate solo quattro): l’unica differenza riguarda la fase.

In python possiamo disegnare l’orbita di alcuni degli Hilda nello spazio 3D, ove sui tre assi cartesiani indicano la distanza (A.U.), al centro in giallo c’è il Sole ed in rosso scuro l’orbita di Giove.

L’orbita di Hilda è disegnata in colore blu e si nota come l’orbita sia inclinata rispetto all’eclittica (circa 7°)

Proseguiamo con l’analisi: dal repository del sito Planetary Data System, sono disponibili al download dati riguardo la massa, il diametro ed albedo di alcuni oggetti del Sistema Solare della missione NEOWISE. La missione NEOWISE operativa dal 2013 al 2017 ha utilizzato un telescopio nell’infrarosso per cercare e analizzare piccoli asteroidi e comete che possono minacciare la Terra. Scarichiamo il dataset, eliminiamo le colonne superflue per l’analisi e filtriamo sugli oggetti Hilda.

Ecco il contenuto parziale:

Alcuni record del dataset MPC relativi agli Hilda registrati dalla missione NEOWISE

Una breve ispezione dei dati ci dice che il dataset contiene:

  • 1089 oggetti di magnitudine assoluta media 13,97
  • un diametro medio di 11,819 Km
  • un albedo medio (in visuale) 0,0597.
Prima ispezione dei dati: analisi della media, scarto e percentili del campione

Procediamo con l’analisi con due diagrammi scatter che mettono in relazione:

  • magitudine assoluta e diametro degli oggetti
  • albedo (in banda visuale) diametro degli oggetti

Come si vede dal grafico a sinistra, gli oggetti più luminosi sono quei (pochi) che hanno diametro maggiore. All’aumentare della magnitudine cresce il numero di Hilda con diametro minore. A destra invece vediamo che l’albedo degli Hilda (circa 0,05) si concentra sugli oggetti con diametro 10 Km (in questo diagramma l’asse delle scisse è in scala logaritmica).

Per dare un’idea delle dimensioni di questa famiglia di asteroidi, utilizzando il modulo Folium si può proiettare il diametro di alcuni di essi su una mappa geografica centrata sula sede del GAV.

Si edivenzia che:

Diametro di alcuni Hilda (i quattro percentili principali) riportati su mappa geografica centrata sulla sede del GAV

Concludiamo l’analisi degli Hilda con due istogrammi riguardo alla distribuzione del diametro (istogramma rosso a sinistra) e dell’albedo (istogramma blu a destra).

Istogramma degli Hilda raggruppati per diametro e albedo visuale

Alcune considerazioni:

  • La maggior parte degli asteroidi Hilda ha un diametro inferiore a 50 Km, ovvero il 99% di tutti gli asteroidi ha un diametro inferiore a 153 Hilda (che è il più grande). E’ coerente anche con il valore mediano della distribuzione (d = 8.362 Km)
  • L’albedo si concentra sul valore compreso fra 0,04 e 0,07 dovuta alla loro composizione carbonacea

Tutti i grafici sono coerenti con quanto già riportato in letteratura: un indice di bontà dell’analisi amatoriale.

Biografia

I compagni di Giove

Python è un linguaggio divenuto popolare in questo ultimo decennio per l’elaborazione, analisi e presentazione di dati allo scopo di sviluppare strategie e modelli per aiutare le decisioni aziendali. Per questo, assieme ad altri tool, è diventato uno standard de facto in Data Science, una materia interdisciplinare che si occupa di analisi statistica per migliorare i processi decisionali. Il linguaggio python possiede molte librerie ed è utilizzato in molti campi della scienza, come ad esempio l’astronomia.

In questo articolo vedremo come estrarre semplici conoscenze (insight) dall’analisi dei dati orbitali degli asteroidi di alcune famiglie, in particolare:

  • Troiani di Giove: questa famiglia di asteroidi si muove sulla stessa orbita di Giove e sono sotto classificati in:

Già predetti da Gauss nel 1772 come possibili punti orbitali stabili, solo nel 1906 Max Wolff scoprì il primo asteroide Troiano e lo chiamò 588 Achille, in onore dell’eroe greco Achille: probabilmente sono stati catturati da Giove in epoca della sua formazione.

  • Hilda: questa famiglia di asteroidi possiede un’orbita compresa fra Marte e Giove all’esterno della fascia principale. Non sono classificati come pericolosi, la loro distanza dal sole varia fra 3.42 AU e 4.53 AU. Si trovano in risonanza di moto medio 3:2 con Giove, tali da avere una certa stabilità orbitale da almeno 2 miliardi di anni. Visti dall’alto formano un triangolo vicino ai punti L3, L4 ed L5. La famiglia prende il nome dall’oggetto principale: 153 Hilda
  • Hungaria: sono una famiglia di asteroidi che orbita tra Marte e Giove entro la fascia principale; anch’essi non sono classificati come pericolosi, la loro distanza dal sole varia da 1.80 AU a 2.09 AU. Hanno un diametro di circa 8.9 Km. La famiglia prende il nome dall’oggetto principale: 434 Hungaria

L’obiettivo è di arrivare a conclusioni comuni a quelli della comunità scientifica basandosi dall’elaborazione amatoriale dei dati astronomici disponibili dai siti degli enti di ricerca.

A tal scopo i dati orbitali di queste famiglie sono liberamente disponibili e scaricabili dal sito del Minor Planet Center (MPC): dato che i file hanno dimensioni enormi, il MPC offre diversi formati a seconda dell’utilità. Il sito è il seguente: https://cgi.minorplanetcenter.net/data: quindi selezionare “Orbits for all asteroids in the MPC database” (formato dat.gz)

Una volta scaricato si ottiene un file csv di 320 Mb circa. Non tutti i campi del file sono necessari per l’analisi: vengono utilizzati solo un sotto insieme. Tramite python possiamo effettuare un’ispezione del contenuto e visualizzare le prime righe del file:

I primi record di dati presenti nel pacchetto del Minor Planet Center

Il Data Format Manual dell’MPC riporta il significato di ogni colonna, eccone le principali:

  • H: magnitudine assoluta
  • G: inclinazione
  • Num_obs: numero di osservazioni
  • M: anomalia media
  • U: incertezza dei parametri
  • a: semiasse maggiore
  • e: eccentricità dell’orbita

Il file contiene 38 campi (colonne) e 1243630 record (ad Agosto 2023). Prima di proseguire con l’analisi effettuiamo una pulizia dei dati eliminando le colonne che non interessano all’analisi, si rinominano alcune colonne e si elencano tutte le differenti tipi di famiglie che il dataset contiene. La lista di tutte le possibili famiglie è la seguente:

  1. MBA (Main Belt Asteroid)
  2. Phocaea
  3. q < 1.665 AU
  4. Hilda
  5. Amor
  6. Hungaria
  7. Trojan
  8. Apollo
  9. Distant Object
  10. Aten
  11. Atira

Il dataset riporta 11 tipi di orbite differenti a cui sono associate famiglie di asteroidi differenti. Filtriamo quindi solo sulle tre famiglie che ci interessano, ovvero: Troiani, Hungaria e Hilda. Una seconda fase di post-processing è necessaria per eliminare gli outliers (σ > 10) ed i record per i quali MPC non ha assegnato dei valori (Nan o Null).  A questo punto possiamo tracciare un primo grafico che, basandosi sull’anno di prima osservazione, mette in evidenza il numero cumulativo di asteroidi individuati per ogni anno.

Osservazioni cumulative delle prime osservazioni degli asteroidi delle famiglie in esame nel tempo

Dai dati dell’MPC si verifica che::

  • la popolazione degli Hungaria supera di molto le alter due famiglie: l’ultima osservazione visuale di un asteroide appartenente a tale famiglia risale alla fine degli anni ’90.

Analogamente possiamo vedere la distribuzione statistica di ogni famiglia, in particolare le nostre tre di analisi:

Utilizzando un diagramma di dispersione (scatter) possiamo vedere a che distanza media dal sole orbitano gli asteroidi di queste tre famiglie rispetto all’eccentricità dell’orbita e all’inclinazione dell’orbita sull’eclittica.

Diagramma scatter di (a, e) ed (a, i) per gli Hungaria, Hilda e Troiani

Alcune considerazioni sugli asteroidi della famiglia Hilda:

  • Si trovano all’esterno della fascia principale degli asteroidi (a ≈ 4 U.A), con un’orbita variabile tra la fascia e Giove (per i dettagli si rimanda al prossimo articolo).
  • Hanno l’orbita più eccentrica delle tre classi, ed è quella che fra le tre classi ha un’inclinazione sul piano del Sistema Solare minore di tutti (minore di 20°)

Alcune considerazioni sugli asteroidi della famiglia Hungaria:

  • Si trovano all’interno della fascia principale degli asteroidi: infatti possiedono un semi asse maggiore compreso fra 1.7 U.A. e 2 U.A
  • Hanno orbite mediamente più inclinata, compresa fra 12° e 40°

Essi appartengono alla famiglia di asteroidi più vicini alla Terra che si trovano attualmente in un’orbita stabile, ma su lunghi periodi la loro stabilità dipende dalle variazioni di eccentricità dell’orbita di Marte.

Istogramma della distribuzione della magnitudine per gli Hungaria, Hilda e Troiani
  • Gli Hungaria sono gli asteroidi più luminosi con H ≈ 19. In tale fascia appartengono circa 3500 asteroidi su un totale di circa 5000. Essi sono classificati come asteroidi di tipo E, con un albedo elevata, seguiti dagli Hilda (H ≈16) ed infine i Troiani (H≈14,5).
  • Gli Hilda essendo composti da carbonati sono meno luminosi, quindi hanno in media una magnitudine assoluta minore.
  • I Troiani sono asteroidi classificati di tipo D composti da silicati e carbonio con luminosità molto bassa,  quindi sono quelli con magnitudine assoluta minore fra le tre famiglie.

Nonostante le considerazioni fatte in questo articolo sono già note nella letteratura scientifica, si è voluto dimostrare come, utilizzando conoscenze di base di programmazione ed i dati messi a disposizione al pubblico dagli enti ricerca, sia possibile raggiungere le stesse conclusioni. Si tratta di un esempio di Citizen science: il coinvolgimento di cittadini ad una semplice ricerca scientifica.

Successivamente verrà effettuata un’analisi più approfondita di alcuni di questi oggetti mettendo in evidenza alcune caratteristiche orbitali e risonanze con altri oggetti.

 Biografia

%d blogger hanno fatto clic su Mi Piace per questo: