Se la presenza di acqua in forma liquida sulla superficie per un periodo sufficientemente lungo di tempo è il requisito di base necessario per poter catalogare come abitabile un esopianeta, tuttavia anche l’evoluzione dell’esopianeta stesso, ovvero la sua storia, rappresenta un fattore da considerare che può determinare le condizioni di fruibilità dell’acqua.
Pianeti come la Terra, per esempio, possiedono sia l’acqua liquida ma anche una sufficiente illuminazione solare sulla superficie che consente agli organismi di sfruttarla per la fotosintesi, mentre altri esopianeti che ad oggi non presentano più acqua in forma liquida sulla superficie ora non sono più abitabili, ma potrebbe essere che lo furono in passato quando le condizioni della stella ospite erano differenti dal punto di vista della sua evoluzione stellare.
Potrebbero esistere anche esopianeti in cui l’acqua è presente in forma liquida sotto la sua crosta (rocciosa o ghiacciata), perché l’esopianeta si trova cosi’ distante dalla stella ospite che la quantità di radiazione che riceve è insufficiente per averne in superficie.
Affiche sia possibile però potrebbe essere necessario una forma di energia interna (geotermica) in grado di scambiare calore con l’oceano d’acqua soprastante ma che si trova sotto la superficie. Se l’esopianeta si trova in condizioni di risonanza (sincrone o di moto medio) con la stella ospite allora le forze mareali possono essere un esempio di fonte principale di energia interna. Dal punto di vista investigativo le possibilità di ricerca di questo tipo di esopianeti è estremamente remota, in quanto occorrono tecniche di indagini in situ; pertanto la ricerca di esopianeti abitabili si limita all’analisi remota con telescopi o altri metodi indiretti basati su modelli planetari.
L’abitabilità di un esopianeta dipende quindi sia dallo studio della sua meteorologia (si costruiscono modelli climatici) e dal fatto di essere alla “distanza giusta” dalla stella ospite per ricevere una quantità di radiazioni in grado consentire la presenza dell’acqua sulla superficie. Il pianeta non deve essere troppo vicino alla stella ma nemmeno troppo lontano; deve orbitare all’interno di una fascia di distanza che si chiama fascia di abitabilità (fascia di Goldilocks). Il termine Goldilock fa riferimento al racconto (macabro) dal tiolo “Riccioli d’Oro e i tre orsi” dove la protagonista è una bambina di difficili gusti che non è mai soddisfatta di ciò che le viene offerto perché molto “esigente”.
Bisogna definire quindi i due estremi dell’intervallo di Goldilocks: la distanza minima (limite inferiore) e la distanza massima della fascia di abitabilità (limite superiore) nella quale l’orbita del pianeta può trovarsi; la fascia di Goldilocks è l’insieme delle distanze all’interno di questo intervallo [dmin, dmax] all’interno del quale si trova l’orbita dell’esopianeta. All’interno di tale fascia devono trovarsi il semiasse minore e maggiore dell’orbita.
Diamo quindi una definizione dei due estremi.
- Limite inferiore dmin: è la distanza dalla stella ospite dove l’acqua sulla superficie dell’esopianeta non è più presente perché la molecola H2O viene dissociata nei suoi ioni (H+ ed OH–) per foto dissociazione e l’idrogeno (il gas più leggero) viene dispeso nello spazio. Si tenga presente che questo processo non avviene perché l’acqua liquida in superficie (oceani) “inizia a bollire” ma perché viene ad alterarsi il ciclo vitale dell’acqua: in situazioni di regime infatti, l’acqua degli oceani evapora, sale nell’atmosfera ove raggiunge un limite massimo di altezza, si condensa in nuvole e precipita di nuovo sulla Terra (laghi e fiumi) e sfocia di nuovo nell’oceano.
Sulla Terra la massima altezza a cui giunge il vapore acqueo si trova al limite della tropopausa (12 Km di altezza circa) ove la temperatura raggiunge i -50 C; oltre questa zone il vapore acqueo non può salire perché si ha inversione termica della temperatura, un limite di altezza per la formazione di nubi.

È in questo strato che avviene la fotodissociazione delle molecole d’acqua da parte della radiazione solare: ad ogni ciclo parte del vapore acqueo presente in atmosfera verrà sottratto prima che possa ritornare al suolo per precipitazione e verrà disperso nello spazio; in questo modo col tempo sempre meno acqua sarà presente sulla superficie del pianeta.
Inoltre, quanto più il pianeta si trova vicino alla sua stella, più efficace sarà il processo di evaporazione poiché l’acqua che assieme alla CO2 è il principale elemento responsabile dell’effetto serra, introdurrà un effetto di retroazione positiva.
- Limite superiore dmax: è la distanza alla quale l’acqua è completamente ghiacciata sulla superficie dell’esopianeta. Per la Terra, ad esempio, se aumentiamo la distanza Terra – Sole la quantità di radiazione stellare ricevuta dal pianeta al suolo diminuirà, e con essa la temperatura. L’acqua presente in atmosfera come vapore acqueo inizierà a precipitare sotto forma di neve, l’albedo 1 del pianeta aumenterà e quindi, con un effetto di retroazione positiva, la temperatura diminuirà fino a ghiacciare tutta l’acqua presente sul pianeta. Un secondo effetto non trascurabile è la quantità di CO2 presente in atmosfera in grado di ritardare l’effetto “palla di ghiaccio”. Se, come sulla Terra, sul pianeta esiste un’attività magmatica che sostiene un ciclo biogeochimico (come quello del carbonio), allora la CO2 che i vulcani emettono in atmosfera si opporrà alla riduzione della temperatura (dovuta all’aumento della distanza orbitale). Prima o poi però anche la CO2 inizierà a condensare e anche questo contributo che si oppone al raffreddamento (retroazione negativa) verrà a sparire. Alcuni astronomi usano basarsi su questo principio per definire di limite superiore di abitabilità, ovvero la distanza dalla stella ospite oltre la quale la CO2 raggiunge il primo limite di condensazione.

La presenza di una tettonica a placche, e quindi di avere un pianeta “vivo” con movimenti di subduzione di placche conferisce maggior stabilità al clima e aumenta ulteriormente il limite superiore di abitabilità.
La figura precedente mostra la zona di abitabilità per il nostro Sistema Solare in funzione del raggio dell’orbita: Venere si trova al di fuori della fascia di abitabilità: il pianeta ha perso la sua acqua attraverso un effetto serra fuori controllo, mentre Marte si trova al limite esterno di tale fascia. Forse, molto probabilmente, Marte lo era circa 4 miliardi di anni fa quando si suppone che il suo emisfero settentrionale fosse stato ricoperto di un enorme oceano d’acqua, poi evaporato.
Anche se può essere molto riduttivo come ipotesi, al fine di avere una stima grossolana della fascia di abitabilità, se escludiamo la presenza di un’atmosfera planetaria ma consideriamo solo la sua temperatura T all’equilibrio2, la fascia di abitabilità del nostro Sistema Solare (una stella di tipo G2V) si trova all’interno dell’intervallo dmin, dmax teorico [0,68 – 1,44] u.a.
Tenendo conto anche della composizione atmosferica, dell’orbita terrestre … gli astronomi non forniscono un valore preciso per fascia di abitabilità del nostro Sistema Solare, ma una serie di intervalli più o meno simili fra loro; in generale, molto ottimisticamente, l’intervallo di abitabilità per il Sistema Solare è compreso nell’intervallo [0,72 – 1,5] u.a.
A questo punto mancano ancora due fattori:
- Calcolare la temperatura dell’esopianeta all’equilibrio termodinamico Teff in funzione di Ts (temperatura superficiale della stella ospite), Rs (raggio della stella ospite) e l’albedo A in funzione della distanza d dalla stella ospite (semi asse maggiore).
- Nota la massa Mp e raggio Rp di un esopianeta fare delle considerazioni teoriche sul tipo di composizione atmosferica (molecole/elementi) che l’esopianeta è in grado di trattenere a se per forza gravitazionale.
Queste informazioni forniscono una comprensione migliore nello studio della composizione fisica (e non solo) di mondi molto lontani da noi basandosi sullo studio dello spettro stellare, astrometria e fondamenta di termodinamica e meccanica celeste.
1. [Rapporto fra l’intensità della radiazione riflessa da un corpo e quella con cui è stato irraggiato. Un corpo perfettamente bianco, ossia riflettente, ha albedo uguale a 1, mentre un corpo perfettamente nero ha albedo uguale a 0, ossia assorbe tutta la radiazione ricevuta. L’albedo dipende dalla sostanza di cui è composto il corpo: la roccia ha una bassa albedo, il ghiaccio ha unìalbedo alta in quanto è un ottimo riflettore.]↩
2. [Per temperatura si intende all’equilibrio termodinamico, ovvero il valore di temperatura efficace Teff]↩
Bibliografia
- Strani Mondi – Ray Jayawardhanan, Codice edizioni
- I pianeti extrasolari – Giovanni Tinetti, Il Mulino
- On the probability of habitable planets – Francois Forget, International Journal of Astrobiology 2013
Categorie:Fascia di Goldilocks
1 risposta »