Archivi tag: Spazio

Spazio e geometria – Parte II

Strutture su media scala. Quando parliamo di strutture su media scala aumentiamo le dimensioni del nostro orizzonte visivo: questo ci consente di percepire nuovi dettagli ed una migliore visione d’insieme. Consideriamo quindi l’orbita di un pianeta intorno alla propria stella: Keplero nel XVII secolo definì le leggi che governano i moti dei pianeti e Newton, poco dopo, definì la legge di gravitazione universale. Newton la definì come una forza attrattiva che agisce su tutti i corpi e che, in particolare per il nostro pianeta, lo costringe a orbitare intorno alla propria stella con un’orbita ellittica.

Nel 1915 Albert Einstein formulò la Teoria della Relatività Generale e cambiò il concetto di gravità: la gravità deforma la geometria dello spazio – temporale intorno alla massa ed il pianeta si muove lungo queste deformazioni.Indispensabile per l’elaborazione della teoria fu lo studio del trattato su calcolo differenziale assoluto con coordinate, ovvero sul calcolo tensoriale su una varietà riemanniana, scritto dai matematico italiani Ricci Curbastro (1853 – 1925) e Tullio Levi Civita che fornì un framework in grado di descrivere come spiegare la geometria e la dinamica dei corpi basandosi sul calcolo tensoriale.

Ecco l’equazione di campo della relatività generale:

Equazione di campo della Relatività Generale
Equazione di campo della Relatività Generale

dove G è la costante di gravitazione universale, Rμν è il tensore di curvatura, R la curvatura scalare, Tμν il tensore energia e gμν è il tensore metrico. I tensori sono matrici (4 x 4) in cui sono estese le tre dimensioni spaziali e quella temporale. Rμν descrive la geometria dello spazio-tempo (la metrica) mentre Tμν descrive la distribuzione della massa-energia ed il momento. La formula si può tradurre nella seguente massima di John Wheeler:

La massa dice allo spazio come curvarsi e lo spazio dice alla massa come muoversi.

La forza di gravità è la manifestazione che la nostra geometria è distorta e qualcuno, o qualcosa, si muove in uno spazio curvo. Anche quando lasciamo cadere un oggetto, esso cade verso il basso attratto dalla forza di gravità e segue una traiettoria che è coerente con la deformazione spazio temporale generato dal campo di gravitazione terrestre.

Ma secondo quale criterio la massa si muove nella curvatura spazio-temporale? Facciamo un passo indietro: su una superficie piana (geometria euclidea) la distanza più corta che unisce due punti è una retta. Questa traiettoria si chiama geodetica ed è il percorso che segue un raggio di luce. In uno spazio curvo, come nei dintorni di una stella (o di un buco nero), la luce percorrerà sempre una geodetica, cioè il percorso più breve, ma relativa alla geometria in cui è immersa. Dal nostro punto di vista la luce percorrerà un tratto curvo nei pressi della massa perché lo spazio viene curvato dalla gravità, ma comunque la luce percorrerà il cammino più breve nello spazio-tempo curvo.

L’eclissi solare del 1919 (quella che confermò sperimentalmente la teoria della relatività generale), dimostrò per esempio che i raggi di luce provenienti dalle stelle occultate dal Sole durante l’eclissi subivano una deflessione gravitazionale e pertanto, le stelle vicino al disco solare apparivano in una posizione più esterna rispetto alla loro posizione originale.

In linea teorica anche Gauss che condusse il suo esperimento avrebbe dovuto osservare una geometria non euclidea, ma siccome il triangolo era costruito su brevi distanze (circa 100 Km) la curvatura dello spazio sarebbe stata molto piccola non rilevabile dagli strumenti di misura. Gauss non poteva condurre esperimenti di curvatura sullo spazio fuori dalla Terra, oggi invece si può: basta andare …. nello spazio. Supponiamo di misurare la distanza fra due oggetti, ad esempio la distanza Terra e Marte, mandando per esempio un fascio laser verso destinazione e ritorno. Ebbene, proprio a causa della curvatura dello spazio causato dal passaggio dei fotoni nei pressi di una massa, questi ultimi impiegherebbero un tempo superiore rispetto al caso facessero lo stesso percorso in assenza delle due masse (Terra e Marte). I fotoni comunque continuerebbero a percorre una distanza che, nella loro metrica, ed in uno spazio curvo rappresenta la distanza più breve che unisce sorgente e destinazione. Questo effetto si chiama effetto Shapiro, e prende il nome dall’astronomo Irwin Shapiro (1929) che l’ha scoperto a metà degli anni ’60. Più recentemente, nel 2004, la NASA lanciò il satellite Gravity Probe B allo scopo di misurare la curvatura spazio-temporale causata dalla Terra. Il satellite orbitava ad un’altezza di 650 Km e portava con sé quattro giroscopi a forma perfettamente sferica ed un telescopio di puntamento (per misure di riferimento). Grazie alla misura della variazione della direzione di puntamento dei giroscopi rispetto a dei punti di riferimento stellari fissi, la strumentazione fu in grado di verificare con estrema sensibilità:

  • L’effetto geodetico: di quanto la Terra altera lo spazio tempo in cui è immersa.
  • L’effetto frame – dragging: di quanto la rotazione terrestre trascina e torce il suo spazio tempo intorno a se durante il suo movimento di rotazione.

I risultati della missione erano in accordo con la teoria di Einstein. La geometria che nasce dall’applicazione della Relatività Generale funziona molto bene su strutture come il nostro Sistema Solare, ma se vogliamo generalizzare e capire la struttura della geometria del nostro universo allora dobbiamo introdurre nuovi concetti di cosmologia, ovvero la scienza che studia l’Universo nel suo complesso (continua).

Bibliografia e immagini

Spazio e geometria – Parte I

Cosa possiamo dire della forma dello spazio intorno a noi? Quali fattori influenzano la geometria dello spazio del nostro Universo?

Il problema I nostri concetti di geometria ‘classica’, ci riportano a quello che ci hanno insegnato a scuola su rette, triangoli, poligoni e si basa su cinque postulati.

  • Per due punti passa una e una sola retta.
  • Una linea retta può essere prolungata a piacere.
  • Dato un punto e una lunghezza R è possibile descrivere un cerchio avente come centro il punto e come raggio R.
  • Tutti gli angoli retti son tra loro uguali.
  • Data una retta e un punto esterno a essa passa una ed una sola retta parallela a quella data.

 

Frammento del secondo libro de “Gli Elementi” – Proposizione 5
Frammento del secondo libro de “Gli Elementi” – Proposizione 5 – Fonte: • http://www.math.ubc.ca/~cass/Euclid/papyrus/papyrus.html

Questo tipo di geometria si chiama euclidea perché studiata da Euclide (nel III secolo a.C.) è descritta ne ‘Gli Elementi’, uno dei libri più tradotti al mondo, e su basa su questi postulati. Per molto tempo i più noti matematici si sono chiesti se il quinto postulato fosse indipendente dagli altri quattro, oppure fosse superfluo e quindi dimostrabile dagli altri quattro.

Nel XXVIII secolo, Lobacevskij e Bolyai, nella ricerca di una dimostrazione mostrarono che cambiando l’ultimo postulato, potevano nascere geometrie alternative e consistenti ugualmente valide; essi modificarono così il quinto postulato come segue:

  • Data una retta e un punto esterno ad essa, passano infinite rette parallela a quella data., e posero le basi della geometria iperbolica.

In seguito Riemann nel XIX secolo, costruì una terza geometria modificando invece il V postulato come segue:

  • Data una retta e un punto esterno ad essa, non esistono rette parallela a quella data e creò gettò le basi della geometria ellittica.

Una conseguenza diretta nella scelta della geometria è la seguente: nella geometria euclidea la somma degli angoli interni di un triangolo è 180°, nella geometria ellittica è maggiore di 180° e nella geometria iperbolica è minore di 180°.

 

Differenti tipi di geometrie
Differenti tipi di geometrie in 2D

La figura precedente mostra un esempio per tre tipi di geometria in uno spazio bidimensionale: ovviamente (la cosa piace molto ai matematici) il problema si può generalizzare in uno spazio N-dimensionale e la superficie corrispondente si chiama varietà di Riemann. Una geometria euclidea in particolare è una varietà piatta, una geometria iperbolica è una varietà a curvatura negativa ed infine una geometria ellittica è una varietà a curvatura positiva.

Capire quindi in che tipo di geometria siamo immersi, ovvero che geometria può descrivere meglio lo spazio in cui viviamo, ha quindi conseguenze dirette su tutto ciò che ci circonda e sui fenomeni che accadono nell’Universo.

Il problema: Lo spazio in cui viviamo, in cui giace il Sistema Solare, la nostra Galassia è piatto o curvo? E il nostro Universo invece? Per affrontare il problema dobbiamo definire tre livelli di analisi in cui ognuno di questi può considerarsi il caso particolare della struttura più grande che lo contiene:

  • Strutture del nostro Universo su piccola scala.
  • Strutture del nostro Universo su media scala.
  • Strutture del nostro Universo su grande scala.

Sappiamo tutti che, nonostante la Terra sia sferica, essa può apparire localmente piatta nell’intorno ad un abitante sulla sua superficie proprio perché le sue dimensioni sono molto maggiori dell’osservatore. Se saliamo di dimensione però (aumentiamo la scala) notiamo invece che la Terra ha una superficie a curvatura positiva.

Esperimento di Gauss sulla curvatura dello spazio
Esperimento di Gauss sulla curvatura dello spazio

Strutture su piccola scala Friedrich Gauss (1777 – 1855), prolifico matematico tedesco, nel 1830 fu il primo a cercare di capire se, lo spazio in cui viviamo, è affetto da curvatura. Per questo motivo si recò su un monte e fece una misura di triangolazione con altre due sommità molto distanti (circa 100 Km) in linea di visibilità. L’idea di base è la stessa spiegata in precedenza: se siamo immersi in uno spazio euclideo allora la somma degli angoli interni del triangolo che ha per vertici le tre sommità delle montagne è 180°. In linea di principio l’esperimento è logicamente corretto; le sue misurazioni riportarono un valore di 180°; tuttavia non poté dedurre nulla, in quanto le sue misurazioni erano affette da errori dovute sia ad imprecisioni che a strumenti di misura (continua).

Bibliografia e immagini