Traiettoria di ritorno libero – Parte II

La TLI trasforma l’orbita circolare in un’orbita ellittica con un apogeo compreso fra 300000 e 500000 Km, ben oltre la massima distanza Terra – Luna. Dato che la procedura è particolarmente sensibile alle condizioni iniziali, l’esatto istante intorno alla LEO in cui riaccendere il motore J2 così come la quantità di tempo per cui deve essere acceso viene calcolato ed aggiornato con grande attenzione dagli ingegneri di Terra del FIDO4 con l’aiuto di grandi calcolatori IBM/360.

I risultati vengono quindi comunicati all’equipaggio via radio per completare un documento riassuntivo contenente tutte le informazioni necessarie per l’esecuzione della fase (Pre Advisory Data, PAD) compresi due eventuali manovre di rientro di emergenza (TLI + 1, TLI + 4) in caso annullamento della TLI. Si consideri la geometria associata alla figura seguente, ove in questo sistema di riferimento la Terra è ferma, mentre la Luna orbita intorno ad essa con una velocità di circa 1 Km/s.

Sia PAL il punto situato nell’emisfero opposto rispetto alla congiungente Terra – Luna nel momento in cui quest’ultima si troverà quando verrà raggiunta dall’Apollo. Per effettuare il trasferimento orbitale efficiente il motore deve essere acceso in PAL chiamato punto antipodale lunare e produrre un aumento di velocità (∆V) tale da consentire alla navicella di lasciare l’orbita di parcheggio.

Dato che l’analisi teorica delle FRT prevedono un tempo di viaggio variabile da 69 a 72 ore per raggiungere la Luna, la TLI deve avvenire considerando la posizione della Luna circa 3 * 13,5° = 40,5° più avanti (verso est) lungo la sua traiettoria (segmento OTOL2). Poiché:

  1. Occorre compensare gli effetti della gravità lunare che perturba l’orbita ellittica del CSM che agisce “muovendo” ‘intera orbita
  2. Nessun motore è in grado di fornire una spinta nominale istantanea, l’accensione del motore avviene in modo continuo per un intervallo breve e limitato

Al punto antipodale PAL si sostituisce con l’arco SE durante il quale il motore rimane acceso. Durante questo periodo di tempo viene fornita un’accelerazione aggiuntiva che provoca un aumento di velocità non tangenziale all’orbita. In pratica l’accensione inizia circa 4° prima del punto PA (punto S), l’Apollo continua per un arco di 25° che lo porta ad un incremento di altezza segnato dal segmento DE.


Il motore finalmente si spegne e l’Apollo si inserisce in un’orbita fortemente ellittica (e ∼0,97) in modo tale da portarla nei pressi della Luna in circa 69 ore di viaggio. La durata della TLI varia da missione a missione, ma in media dura ∼6 minuti e fornisce un ∆v di ∼3 Km/s. La velocità dell’Apollo raggiunge un valore compreso fra 10,4 Km/s e 10,8 Km/s rispetto alla Terra (comunque inferiore alla velocità di fuga), mentre gli astronauti subiscono un’accelerazione da 0,4 g a 1,4 g.

Ecco la tabella NASA delle TLI per le varie missioni Apollo:

Fonte: NASA

Durante il viaggio la capsula Apollo in generale risente dell’influenza gravitazionale di entrambi i corpi, tuttavia finché non intercetta la sfera di influenza gravitazionale lunare (Sphere of Influence, SOI), ovvero la regione di spazio all’interno della quale l’attrazione del nostro satellite è dominante rispetto a quella terrestre, gli effetti gravitazionali del nostro pianeta saranno quelli predominanti, quindi l’Apollo proseguirà il suo viaggio lungo il braccio di andata della nuova orbita ellittica risultato della TLI. Dato che la Luna non è ferma nello spazio, è fondamentale la tempistica, altrimenti l’Apollo non incontrerà mai la Luna.

La Terra fotografata dall’Apollo 8 durante la TLI
Fonte: https://www.nasa.gov/feature/50-years-ago-apollo-8-you-are-go-for-tli

Intorno alla Luna Il viaggio dell’Apollo prosegue finché non intercetta la SOI lunare. All’interno di questa regione la traiettoria è progettata in modo tale da anticipare il suo arrivo con una traiettoria retrograda (ovvero passando davanti alla Luna) per poi circumnavigare il lato nascosto. Per capire il motivo di tale scelta immaginiamo di vedere il percorso dall’alto del piano orbitale (da Nord): entrambi i corpi orbitano in senso antiorario da Ovest verso Est. Se la traiettoria transitasse dietro la Luna lungo la stessa direzione del moto lunare la quantità di momento angolare acquisito sarebbe più elevato rispetto al caso in cui l’Apollo transitasse davanti ad essa (in opposizione alla direzione del moto lunare). In quest’ultimo caso, infatti, il momento angolare sottratto alla Luna è maggiore.

Transitare lungo la stessa direzione con cui si muove la Luna comporta un aumento il momento angolare dell’Apollo tale da portarlo in un’orbita più larga e una durata della missione maggiore; al contrario, passando invece davanti alla Luna, l’Apollo subisce l’effetto opposto che funziona come un freno gravitazionale (sottrae maggior momento angolare alla Luna) ed entra nella SOI con un minore velocità, con i seguenti vantaggi:

  • un consumo di carburante inferiore.
  • La possibilità di raggiungere un perigeo lunare più basso, quindi facilitare la LOI (Lunar Orbit Insertion) in previsione dell’allunaggio

Queste considerazioni fa in modo che la traiettoria di ritorno libero assume la caratteristica forma ad 8 (a simmetria speculare nel braccio di ritorno) con un tempo di percorrenza complessivo di circa 7,5 giorni: un intervallo di tempo compatibile con i requisiti di missione imposti dalla NASA.  In fase di progettazione della traiettoria i tecnici della NASA hanno dovuto tener in conto di tutti i fenomeni fisici del sistema, e questo rende il fenomeno molto più complesso da trattare.

Per non complicare eccessivamente la spiegazione, supponiamo valgano le seguenti ipotesi semplificative:

  • Non si considerano gli effetti relativistici
  • Non si considerano gli effetti della pressione di radiazione solare
  • Il Sistema Solare giace su un piano 
  • Si escludono perturbazioni solari mensili e annuali fuori dal piano orbitale
  • Non si considerano le perturbazioni dei giganti gassosi (Giove)
  • Non si considera la precessione dei nodi lunari
  • Non si considerano le differenze di distribuzione di massa della Terra (variazione di gravità) e della Luna (mascon lunari)

(continua)

Bibliografia

  • Digital Apollo Human and Machine in Spaceflight, MIT Press
  • How Apollo flew to the Moon, David Woods Springer

Note

4Flight Dynamics Officier: è responsabile delle traiettorie di volo della capsula.

Traiettoria di ritorno libero – Parte I

photo of moon

Un aspetto fondamentale delle missioni Apollo fu la determinazione delle traiettorie che il Modulo Comando e Servizi (CSM) avrebbe dovuto percorrere per raggiungere la Luna ed inserirsi in orbita lunare. Per andare dalla Terra alla Luna e ritorno (in sicurezza) esistono tante traiettorie possibili in funzione dei vincoli di progetto, ognuna con vantaggi e svantaggi. Ad esempio si può utilizzare una manovra LTO1 tradizionale oppure sfruttare i limiti di stabilità delle autostrade gravitazionali del sistema Terra – Luna con un’orbita WSB2 come ha fatto la sonda Hiten negli anni Novanta.

Orbita della sonda giapponese Hiten.
Fonte: Ways to the Moon? R. Biesbroek, G. Janin ESA bulletin 103 – August 2000

Nel caso delle missioni Apollo traiettorie del genere non sono fattibili: ci sono diversi vincoli di progetto che limitano le scelte, eccone alcuni:

  • La durata: la missione deve avere una durata massima di 14 giorni per essere compatibile con la durata media di progetto della capsula Apollo3.
  • Luogo di allunaggio: la traiettoria deve facilitare l’inserimento in orbita lunare ed essere in funzione del luogo di atterraggio. I luoghi di allunaggio in fascia equatoriale (quelli scelti dell’Apollo) richiedono una traiettoria differente rispetto ad allunaggi in zone polari.
  • Costi: il consumo di carburante è il fattore più stringente nelle missioni spaziali (più massa vuol dire più costi) quindi bisogna privilegiare traiettorie che implicano basso consumo di propellente. Questo requisito richiede la ricerca di traiettorie di trasferimento orbitale ottimale (ad esempio Hohmann). Nella voce costi ricadono anche i materiali di consumo quali ad esempio viveri: una durata di cento giorni come per la Hiten non è praticabile.
  • Sicurezza: bisogna essere in grado di mantenere in sicurezza un equipaggio di 3 persone per un lungo periodo di tempo chiusi in una capsula dalle dimensioni 3,9 metri (diametro) x 3,65 metri: in ogni caso la NASA voleva assicurarsi un rientro dell’equipaggio a Terra anche in caso di emergenza estrema.

Le traiettorie circumlunari sono dei buoni candidati perché rappresentano un buon compromesso fra requisiti non sempre compatibili fra loro: fra queste esiste una classe di traiettorie durante le quali la sonda subisce sempre un moto di caduta libera chiamate traiettorie di ritorno libero (Free Return Trajectory, FRT). L’idea alla base di questa strategia era quella di mantenere il CSM in una traiettoria FRT fino a quando non avesse raggiunto la Luna ed avesse iniziato l’inserimento in orbita lunare (LOI): se qualche anomalia fosse insorta durante il viaggio verso la Luna la navicella sarebbe stata ancora in grado di rientrare sulla Terra spontaneamente circumnavigando la Luna apportando all’occasione immancabili brevi correzioni di rotta grazie al sistema propulsivo del modulo di servizio.


Le FRT furono già usate dai sovietici per l’invio di sonde lunari negli anni ’50 sfruttando il lavoro teorico pionieristico di Jurij Kondratjuk (1879 – 1942): esse sono in grado di trasferire una capsula in orbita lunare in circa 69/72 ore, si trattava di adeguarle per le missioni Apollo. Con valori di spinta opportuni, infatti, è possibile far percorrere ad una capsula una FRT, in modo tale che essa orbiti intorno alla Luna e ritorni verso la Terra spontaneamente senza l’utilizzo di altre manovre propulsive ma semplicemente sfruttando la gravità lunare. La NASA poteva così assicurarsi che, nel caso di situazione estrema, la capsula sarebbe ritornata “a casa gratis” senza ulteriori manovre.

Fonte: NASA

All’interno del programma Apollo, le missioni 8, 10 e 11 volarono tutte su questo tipo di traiettorie, mentre le successive sfruttarono delle traiettorie ibride.

Il motivo di questo cambiamento è che la FRT, pur essendo più sicure, consentivano di allunare soltanto in corrispondenza della regione equatoriale della Luna.

Poiché i siti di allunaggio delle missioni successive si trovano a latitudini superiori, si è reso necessario adottare questo tipo di soluzione. In una traiettoria ibrida la navicella viaggia inizialmente seguendo una FRT ma differente rispetto alla precedente, ma durante la traversata essa viene abbandonata per immettersi su una traiettoria ottimale che dipende dal sito di allunaggio desiderato. Esse richiedono sempre l’inserimento in un’orbita molto ellittica, ma non richiedono requisiti geometrici Terra – Luna particolari ed hanno il vantaggio di portare a bordo un carico maggiore.

In orbita intorno alla Terra: Il punto di partenza per la nostra trattazione è immaginare l’Apollo in orbita intorno alla Terra su un’orbita bassa di parcheggio (LEO, Low Earth Orbit) compresa fra 180 e 200 Km di altezza (∼100 miglia nautiche) da Ovest verso Est. Come tutti i lanci delle missioni Apollo essi sono avvenuti in direzione Est in modo da sfruttare la rotazione terrestre: questo accorgimento serve sia a far guadagnare circa 1100 Km/h di velocità sia di consumare una minore quantità di combustibile. In orbita LEO, con l’assistenza della Control Room del Mission Control Center (MCC) di Houston si effettuano i controlli di sistema per verificare la strumentazione di bordo, incluso l’allineamento dell’IMU (Sistema di navigazione inerziale) con le stelle di riferimento.

L’Apollo non può rimanere a lungo in orbita di parcheggio in quanto la batteria del terzo stadio che deve assolvere diversi compiti ha una durata limitata compreso accendere/spegnere il motore J2 del S-IVB e sfiatare/ventilare periodicamente l’idrogeno liquido dal suo serbatoio per motivi di sicurezza ed efficienza. La batteria ha anche il compito di facilitare il pompaggio dell’idrogeno in camera di combustione con l’ossigeno.

La TLI è una fase critica della missione: il tempismo nell’accensione dei motori è infatti fondamentale per poter intercettare la Luna lungo la sua orbita intorno alla Terra.

Per missioni di breve durata, quando si può escludere l’influenza gravitazionale di altri corpi, può essere considerata una traiettoria di trasferimento di Hohmann approssimata in un’orbita molto ellittica.

(continua)

Bibliografia

  • Digital Apollo Human and Machine in Spaceflight, MIT Press
  • How Apollo flew to the Moon, David Woods Springer

Note

1Una manovra Lunar Transfer Orbit si ottiene con un trasferimento ellittico alla Hohmann con eccentricità elevata alzando l’apogeo orbitale finché la sonda non viene catturata dalla Luna.

2Le orbite Weak Stability Boundary sono state studiate da E. Belbruno (1987) e riguardano trasferimenti balistici dalla Terra alla Luna. Esse sfruttano regioni nello spazio delle fasi dove gli effetti perturbativi del sistema Terra-Sole-Luna che agisce sulla sonda tendono a bilanciarsi (problema dei quattro corpi ridotto). Queste orbite utilizzano carburante ridotto ma raggiungono la Luna in un tempo variabile da 80 a 100 giorni.

3Nella presente discussione si usa il termine di capsula, navicella o sonda per indicare genericamente l’Apollo; il contesto e del piano di volo è evidente che si riferisce al S-IVB e il CSM, al solo CSM o al CM.

Quale approccio per andare sulla Luna?

photo of moon

Il 25 maggio 1961 J.F. Kennedy pronunciò il famoso discorso Abbiamo deciso di andare sulla Luna” al Congresso degli Stati Uniti che ha ispirato il popolo americano a unire gli sforzi per raggiungere l’obiettivo più ambizioso che l’Essere Umano abbia mai perseguito: mandare un uomo sulla Luna e farlo ritornare sulla Terra sano e salvo.

I believe that this Nation should commit itself to achieving the goal before this decade is out of landing a man on the Moon and returning him safely to the Earth.

J. F. Kennedy

Nel 1961 la NASA non aveva ancora alcuna idea precisa circa il modo mandare un equipaggio umano sulla Luna, ma il personale tecnico era già al lavoro per preparare una visione d’insieme del progetto. Uno delle prime questioni fondamentali che gli ingegneri avrebbero dovuto affrontare del programma Apollo era rispondere alla seguente domanda:

Con quale approccio mandare tre astronauti sulla Luna?

Locandina di un film di fantascienza del 1950

La risposta più semplice sembrava essere quella di lanciare un vettore dalla Terra abbastanza potente da atterrare direttamente sulla Luna, quindi lasciare la superficie lunare per il rientro in sicurezza sulla Terra. Questa modalità di volo venne chiamata ascesa diretta o Direct Ascent (DA). Si trattava di una modalità simile a quella che proponevano i film di fantascienza negli anni ’50 con un unico razzo vettore che si alza e atterra in verticale comandato dagli astronauti dalla cima del razzo.

Questa ipotesi richiedeva la costruzione di un vettore di dimensioni immense chiamato Nova (maggiori di quello che sarebbe stato il Saturn V). ed era sostenuta dallo Space Task Group, già responsabile delle capsule Mercury, e portava con sé vantaggi e svantaggi: era una soluzione semplice e quindi presentava pochi punti di criticità, ma costi proibitivi dato che avrebbe dovuto portare con sé tutto il necessario (compreso il carburante) per l’intera missione.

Un’alternativa alla DA era costituita dal lancio di due o più razzi vettori più piccoli in orbita bassa terrestre: una volta in orbita le varie parti venivano assemblate insieme tramite un’operazione di Docking e Rendezvous finale prima di effettuare il trasferimento orbitale verso la Luna (TLI / Trans Lunar Injection). Questa seconda ipotesi venne chiamata Earth Orbit Rendezvous (EOR) ed era sostenuta dal Marshall Space Flight Center in Alabama dove era impiegato Wernher Von Braun.

Per molti mesi queste furono le uniche due opzioni sul tavolo per il progetto Apollo, finché John Houbolt iniziò a lavorare ad una terza opzione: il Lunar Orbit rendezvous (LOR) o rendezvous in orbita lunare. Houbolt era un ingegnere che lavorava dal 1942 al Langley Research Center.

Dopo alcune esperienze con la British Royal Aircraft conseguì un dottorato presso il Politecnico di Zurigo con una tesi sui problemi strutturali legati alle temperature nei voli ad alta velocità. Nel 1958 iniziò ad interessarsi di manovre orbitali e nell’anno seguente sviluppò l’idea.

Dr John Houbolt (1919 – 2014)

Gli attori principali del LOR erano i seguenti:

  • la navicella madre o modulo di comando (CM)
  • il modulo di servizio (SM) contenente i sistemi di controllo e sussistenza
  • il CM ed SM compone il CSM, modulo di comando e servizio
  • Il razzo a tre stadi Saturn V
  • il lander lunare (LM) a sua volta composto da un modulo di ascesa (AS) e discesa (DS)
Dr John Houbolt ed il LOR (Fonte: Getty Images)

L’approccio LOR consiste nei seguenti passi:

  • Dopo 13 minuti dal lancio il terzo stadio del Saturn V raggiunge l’orbita di parcheggio LEO per la verifica dei sistemi del CSM. In caso di problemi è ancora possibile il rientro a Terra.
  • Si riaccendono i motori e si effettua la TLI (Trans Lunar Injection)
  • Dopo tre ore dal decollo si apre a petalo l’ogiva del terzo stadio scoprendo il LM. Il CSM si allontana, vira di 180 gradi torna indietro, aggancia il LM e lo estrae.
  • Il terzo stadio viene abbandonato (messo in orbita eliocentrica), il CSM si riallinea nella direzione della traiettoria translunare.
  • Dopo circa 80 ore l’Apollo si inserisce in orbita circolare con perilunio di 111 Km. Il pilota ed il comandante si trasferiscono nel LM. Il LM si distacca dal CSM che rimane in orbita lunare.
  • Il LM inizia una serie di accensioni controllate e deorbita. La procedura di discesa è automatica con la possibilità di effettuare manualmente correzioni di rotta.
  • Gli astronauti, quindi, atterrano e proseguono con l’EVA. Viene utilizzato il DA del LM per la fase di ascensione e ricongiungersi al CSM.
  • Si effettua il docking e si abbandona il DA del LM ormai inutile e si entra in ETI (Earth Transfer Injection)
  • Correzioni di rotta, in prossimità della Terra si abbandona il SM e gli astronauti rientrano sulla Terra.

I vantaggi presentati dal LOR erano molteplici:

  • il veicolo con funzioni di allunaggio poteva essere molto più piccolo e specializzato solo per il suo scopo.
  • Una minore massa complessiva del vettore da progettare e quindi un minore consumo di carburante. In questo contesto il Saturn V di Von Braun era preferibile al progetto del Nova.
  • Il restante equipaggiamento necessario per il rientro sulla Terra rimaneva in orbita, al riparo dai problemi di allunaggio.
  • La discesa sul suolo lunare poteva iniziare da un’altezza più bassa e sicura piuttosto che da una velocità di arrivo più elevata se provenienti direttamente dalla Terra.
  • Più fattibile dei precedenti in quanto prevedeva la costruzione di veicoli più piccoli ed indipendenti. Questo significava che potevano essere costruiti contmporaneamente da appaltatori diversi. In tal caso i tempi di progetto erano più brevi e più verosimilmente entro la fine degli anni ‘60
Von Braun e altri membri della NASA in un meeting negli anni ’60. Sullo sfondo la traiettoria dell’Apollo 8

L’opzione LOR comportava anche molti costi aggiuntivi, perché introduceva una maggiore complessità, equipaggiamento e più personale da impiegare. Il Rendezvous lunare era inoltre un’operazione molto critica: nessuno aveva ancora fatto un rendezvous terrestre e, in caso di problemi era possibile fare rientrare gli astronauti secondo un’orbita balistica. Sulla Luna questo non era possibile: se il rendezvous fallisce gli astronauti sono persi per sempre.

Nel dicembre 1960 alcuni ricercatori del Langley presentarono formalmente il progetto all’amministratore delegato della NASA Dr. Seamans il quale, nonostante ne riconobbe la validità, non ottenne l’approvazione ufficiale in quanto considerato un’opzione molto rischiosa. Per tutto il 1961 due comitati separati della NASA lavorarono alla valutazione delle prime due opzioni: DA (appoggiato dal Lundin Committee) e EOR (appoggiato dal Heaton Committee).

Houbolt tenne altre presentazioni durante quell’anno sia nel corso dello Space Exploration Program a Washington sia al Golovin Commitee nell’agosto 1961, finché nel novembre 1961 Houbolt si decise scavalcando tutte le gerarchie di scrivere una lettera risolutiva a Seamans dove esortava la NASA a prendere in considerazione anche la sua opzione se si voleva andare sul serio sulla Luna.

Do we want to go to the Moon or not?

John Houbolt

Due settimane dopo la NASA, si disse seriamente interessata a prendere in considerazione tutte le opzioni, anche la terza opzione, e in seguito gli operatori e i comitati (tra cui il Space Task Group) la appoggiarono. Anche Von Braun, sostenitore inizialmente dell’EOR cambiò idea ed appoggiò il LOR in quanto vista come l’unica opzione veramente fattibile per l’allunaggio in tempi brevi (entro la fine del decennio del 1960).

Diagramma con i tre approcci differenti per la missione di allunaggio

Solo il 12 luglio 1962, ben un anno dopo il discorso di Kennedy, Robert Seamans ed il neo amministratore NASA James Webb annunciarono a Washington la scelta del LOR per il progetto Apollo.

Bibliografia e immagini